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ABSTRACT
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clutter, where the traditional Fourier transform method may fail.
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Application of the Fractional Fourier Transform in the
Detection of Accelerating Targets in Clutter

Executive Summary

Accelerating targets introduce chirped signals in the radar backscatter signal which can-
not be efficiently detected by the traditional Fourier transform (FT). However, they can
appear as pure tone signals with the Fractional Fourier Transform (FrFT) and thus can
be efficiently detected with the same coherent integration gain achievable by the FT on
pure tone signals. The important feature allowing success of the FrFT is the achievable
optimum focusing of chirped signals when applied to the FrFT, whereas the clutter signal
is always defocused. Results achieved based on simulated clutter data have shown to be
very promising.
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1 Introduction

The current work is focused on answering the question of how the relatively new tool
called the Fractional Fourier Transform (FrFT) can be used to significantly improve the
detection of an airborne accelerating target in the presence of land and sea clutter by a
pulsed Doppler radar.

The use of the classic Fourier transform (FT) in coherent radars, for detection pur-
poses, works most efficiently on constant (radial) velocity targets which impart pure tone
signals in the radar backscatter. For accelerating targets inducing chirped signals, whose
instantaneous frequency varies approximately linearly over a typical coherent processing
interval (CPI)1, a frequency line in the frequency spectrum would become spread out, the
extent of which depends on the bandwidth of the induced chirps. Fortunately, the FrFT,
which can be viewed as a generalisation of the traditional FT, can be used to achieve the
same level of coherent integration gain, although with an extra but affordable computa-
tional throughput requirement. With the FrFT, chirp signals can appear as pure tone
signals in ‘fractional time’, in a suitably rotated time-frequency domain. This is the first
major advantage of using the FrFT.

The second advantage of using the FrFT is the possible defocussing, or suppression,
of clutter signal power in the rotated (or ‘fractional’) frequency domain when the FrFT
is applied to focus the chirped target signal. Some of the discussion in this work will
be devoted to this effect, to determine how much radar clutter of various types can be
suppressed at various angles of rotation of the time-frequency domain. Here, simulated
clutter data has been used to demonstrate preliminary results. Further results on real
clutter data will be reported at a later time.

To complete the discussion, we also review recent developments in the literature on
the topic of accelerating target detection in clutter. In particular, the time-frequency
techniques proposed by Yasotharan et al. [1] and other tools [2] such as the S-Method will
be discussed and compared with the FrFT.

The main results from this work are as follows. We find that the FrFT is the most
suitable technique when the Doppler profile of the accelerating target is either inside or
significantly overlapping with that of clutter, while the S-Method is most efficient when
target Doppler is close but sufficiently separated from the clutter Doppler region. The two
techniques can thus be viewed as mutually complimentary, in the sense of maintaining
detection of a manoeuvring air target for the whole duration of a manoeuvre in most
realistic scenarios in which the target manoeuvres in and out of the clutter frequency
region. The FrFT is slightly more computationally expensive but produces estimates for
both the target velocity and target acceleration for the current CPI, while the S-Method
is a slightly faster technique and produces only an average target velocity.

1A CPI is a time interval over which the signal is coherently integrated to maximise the signal gain in
the receiver.

UNCLASSIFIED 1
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2 Radar Environment and Signal Models

Our current problem assumes an airborne pulsed Doppler radar, in a look-down scenario,
with its receiver employing possibly a number of range bins and a CPI of N time samples,
which is supposed to be both large enough to capture the acceleration of a target and
short enough to be compatible with the baseline processing of the radar preventing ‘range
walk’ across adjacent range bins. Furthermore,

• Detection processing is required at each CPI, and thus the choice of processing
across the CPIs may be an additional option but not a replacement of the CPI-level
processing;

• Each range bin is Doppler processed separately, using the same algorithms proposed
herein.

• For simplicity, only schematic radar antenna gain patterns are currently included in
our study.

Within this context, ground or sea clutter is expected to have a finite Doppler extent
depending on the range bin being processed, antenna gain pattern and look angle, platform
speed, and altitude. Signal data structures such as spectrograms are not involved, and
only Doppler processing for a CPI needs be considered. For practical reasons, we also
assume that no more than one accelerating target can be present in any one range bin and
any one CPI.

In continuous form, the total signal in the radar receiver typically consists of three
components

u(t) = s(t) + c(t) + n(t),

of the target signal itself, the clutter, and the receiver thermal noise, respectively. The
thermal noise component n(t) is assumed to be simply Gaussian white noise with its
amplitude set to 10 dB below the clutter. The following subsections describe the models
being used for s(t) and c(t) in some detail.

2.1 Target Model

Assuming that the target has a constant linear acceleration a during the CPI, the target
velocity is v = v0 + at, where v0 is initial velocity. In the monostatic radar configuration,
the sampled radar return signal from the target can readily be shown to take the form

s(tn) = An exp {2πitn (fd + atn/λ)}, n = 1, 2, . . . , N (1)

where An are the return signal magnitudes governed by the radar range equation, λ is the
radar wavelength, and fd = 2v0/λ is the baseline target Doppler frequency corresponding
to initial target velocity v0. Here, n is an integer representing the sampling time index,
N is the number of time samples in the CPI, or ‘CPI length’ as mentioned earlier. For
simplicity, we also assume that signal reception is free of blind zones. The sampling rate for
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each range bin , i.e. the inverse of the sampling period, also known as the pulse repetition
frequency or ‘PRF’, determines the maximum unambiguous velocity of the system.

In this work, the target signal amplitudes An can be modelled as Swerling I type or
Swerling II type. As a reminder, a Swerling I type target has a constant An for all values of
n in a CPI, and for all CPIs of a time-on-target, but fluctuates according to a Chi-square
distribution from scan to scan. Refer to [3] for more detail. On the contrary, a Swerling
II type target signal has An varying pulse-to-pulse.

For the applications described herein, detection processing is required for each CPI,
and the effects of scan-to-scan target fluctuation are not considered.

2.2 Clutter Model

The aim of this section is not to propose new clutter models but only to summarise the
main features of well-known standard models which provide a necessary component of the
composite radar backscatter signal, to which the novel tools of the FrFT and S-Method
are applied.

The surface clutter model discussed here is derived from basic assumptions about the
amplitude and Doppler distributions of the clutter backscatter of the surface, as described
in [4]. As is customary in the radar clutter simulation community, the ground is usually
represented by a number of ‘patches’ whose area is determined by the ‘footprint’ of the
antenna main beam on the ground. If ∆θ denotes the azimuth width of the main beam,
which is also used as the clutter patch width, and ∆r denotes the range bin size of the
radar, then the area of a clutter patch is

Ac = r∆r∆θ,

where r is the range to the patch. All such patches on the surface, indexed by a subscript
i, contribute to the total clutter return, through either the mainlobe or the sidelobes of
the antenna, depending on the instantaneous geometry. The signal from ith patch can be
modelled as

ci(t) = Ci e
iφi(t) (2)

where Ci and φi respectively represent amplitude and phase of the signal, which are
modelled separately as follows.

Clutter signal amplitude is modelled as a product of the area of the illuminated patch,
denoted by Aci , and a backscatter coefficient called σi, i.e.

Ci = Aci σ0i.

Furthermore, it is assumed that
σi = σwiσ0,

where σ0 models the mean reflection coefficient from the patch - a function of only radar
frequency, grazing angle, and polarisation, while σw is a random variable with a Weibull
distribution:

p(σ0) = αβ σα−1
i e−β σ

α
i . (3)

UNCLASSIFIED 3
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Here, α = 1/ai, ai is known as the shape parameter and β is known as the scale parameter.

Note that, for simplicity, we are assuming that the amplitude time samples from each
patch are not correlated but are Weibull distributed across the different clutter patches.

The shape parameter is derived by the clutter cell area such that,

ai =

{
ρ (Aci ψi)

−1/3, for sea clutter,
6.74− 0.8 log10(Aci), for land clutter,

(4)

and ρ = 3.75 for horizontal polarisation and ρ = 1.88 for vertical polarisation.

The scale parameter is related to the mean reflection coefficient such that

β =
{

Γ(1 + ai)
σ0i

}1/ai

(5)

where Γ(x) is the Gamma function of x.

The effectiveness of the signal to reflect off the surface is described by the mean reflec-
tion coefficient, σ0, which depends only on the frequency, grazing angle and polarisation
as mentioned earlier. The GIT model [6] and NECAPS model [4] are used for sea and
land clutter mean reflection coefficient calculations respectively.

The phase function φi(t) of the clutter signal is modelled by simulating the instanta-
neous Doppler frequency of a clutter patch on the surface, which can be expressed in the
form

fi = fp cosψ cos θ + fclut

where ψ is the grazing angle (elevation angle between the radar and clutter patch), θ is the
azimuth of the patch with respect to the radar, fp = 2vp/λ is the platform Doppler (given
a platform velocity of vp), and fclut = 2vi/λ is the statistical component of the clutter due
to the surface characteristics, with vi being a sample taken from a normal distribution
with the mean and variance of the distribution depending on surface type.

For sea and land clutter, the mean of the distribution is,

µ = mean(vi) =

{
vdop, for sea clutter,
0, for land clutter

(6)

where

vdop =

{
0.85
√
v0 cos γ, for horizontal polarisation,

0.15 v0 cos γ, for vertical polarisation
(7)

where v0 is the velocity of the clutter and γ is the angle between the platform direction
and the wave direction. The variance is

σ2 = var(vi) =

{
0.1 v0, for sea clutter,
0.5, for land clutter.

(8)

The velocity of the sea clutter, v0, is derived directly from the sea state [11], ss, where
v0 = 3.16 ss0.8. Finally, the time samples of the clutter signal phase function φi(t) for a
CPI can be written as

φi(t) = 2π(n− 1)fi × PRI + φ0, n = 1, 2, . . . , N, (9)

where PRI is the pulse repetition interval and φ0 is the initial phase of the first pulse.
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Table 1: System and scenario parameters for clutter simulation

Carrier Frequency, fc 3 GHz
Pulse Repetition Freq, PRF , 40 kHz

Polarisation horizontal
Platform Velocity, vp 100 m/s

Antenna Look Direction forward
Sea State, ss 3, 5

Wave Direction, γ 0◦

Antenna Beamwidth, ∆θ 6◦

Range Bin Size, ∆r 150 m

2.2.1 An example

An example of simulated sea clutter using the model described above and typical scenario
parameters is shown in Table 1. The clutter spectra for sea state 3 and 5 are shown in
Figure 1, for which a CPI of 0.5 s is used. Note that:

1. Both mainlobe and sidelobe clutter are considered in these examples, employing a
simple sinc antenna pattern, with sidelobe levels −13 dB below mainlobe. With a
forward looking antenna, mainlobe clutter occurs at the upper edge of the clutter
region, causing an asymmetric look to the clutter spectrum.

2. By the nature of our problem, only one range bin containing both mainlobe and
sidelobe clutter is investigated with no clutter beyond the clutter patch. And for
simplicity, only those clutter patches inside ±30◦ of the look angle are included.

3. Also for simplicity, and to investigate how clutter behaves under the FrFT, no noise
is added to the simulated signal and no FFT windowing has been applied.

(a) For sea state 3 (b) For sea state 5

Figure 1: Examples of Doppler spectra of simulated clutter for sea states 3 and 5,
showing both mainlobe and sidelobe clutter.

UNCLASSIFIED 5
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3 The Fractional Fourier Transform and The

S-Method

The use of coherent integration techniques to detect signals contaminated by noise and/or
clutter is older than radar itself. And in this area, the Fourier Transform (FT) and its
discrete versions are pivotal. However, the FT works best only when the signal is made
up of one or more pure tones. In radar detection problems, targets with an approximately
constant velocity during a coherent integration time interval induce an approximately
constant Doppler frequency, and hence are perfectly suited to the basic requirement of the
FT. Beyond the assumption of constant velocity, coherency breaks down, though in a well
defined manner, and the output from a FT processing is no longer a spectrum with well
focused peaks, but may consist of smeared ‘plateaus’, such as that shown in Figure 2.

Figure 2: The Fourier spectra of two chirp signals generated by scatter-
ers with accelerations of 2g and 10g and the effect on the chirp bandwidth
for different CPI’s.

The width of such a plateau is a measure of the bandwidth of the frequency modulated
signal, or ‘chirp’. Recently, Yasotharan et al. [7] have done a quantitative assessment of
the degradation of the FT when applied to accelerating targets which typically produce
a linear chirp during a CPI. An extension of the results contained in [7] are shown in
Figure 3. The gain selected for plotting in this figure is the gain at the maximum point on
the chirp. It can be seen that while the oscillatory behavior of the gain factor is the direct
result of this choice for the gain factor, the mean gain factor quickly saturates, as the CPI
length is increased, to a value that is monotonically decreasing with target acceleration.

The fractional Fourier transform (FrFT), first proposed by V. Namias [8], is a relatively
new tool for signal processing. It can be described as a generalisation of the classic Fourier

6 UNCLASSIFIED
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Figure 3: Coherent gain of the traditional Fourier transform versus
CPI length, for various target accelerations for a 3 GHz radar with a 40
kHz PRF.

transform in which a linear chirp signal in the real time domain becomes a pure tone signal
again in the suitably rotated time-frequency domain. An attractive advantage of the FrFT
is that it is a linear transform, and hence is free from cross coupling between multiple
frequency components of the signal. A disadvantage, however, is the extra computational
cost associated with the search for the usually unknown chirp rate. For this reason, it
is proposed in this work that the FrFT is used in conjunction with the S-Method form
of Wigner distribution (WD) for detecting accelerating targets; the optimal precedence
depends on specific target-clutter scenarios.

Techniques based on the WD or the S-Method have been proposed earlier in [1].2 The
advantage of the S-Method is its relatively low computational cost and high efficiency when
a target is well separated from clutter, or if the S-Method is applied to the clutter clear
region only. A possible disadvantage of the S-Method is with cross terms if multiple targets
(multiple chirped signals) do exist in the same range bin, or if target-clutter separation is
not available.

We postpone the discussion on the efficiency of applying these two techniques in real
target detection scenarios to the next section. For the rest of this section, a brief sum-
mary of the theory and applications of the FrFT, the S-Method, along with measures of
performance, are given.

2Though the authors therein considered a different problem.
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3.1 The Fractional Fourier Transform

A definition of the FrFT is now given. For a time signal s(t), its FrFT in continuous form
is defined as

Sα(u) = Fα{s(t)} =
∫ ∞
−∞

K(α, u, t) s(t) dt, (10)

where the kernel function is

K(α, u, t) =


(

1−i cotα
2π

)1/2
exp{i cotα

2 (u2 + t2)} exp{−i u
sinα t}, α 6= nπ,

δ(t− u), α = 2nπ,
δ(t+ u), α = (2n− 1)π,

(11)

and where α is called the order of the transform, or ‘transform order’, which can also
be interpreted as an angle of rotation in the time-frequency plane. For α = 0 (i.e for
n = 0 in Equation 11), we have S0(u) = s(u) which is the time-domain signal itself. For
α = π/2, we have cotα = 0 and sinα = 1, and Sπ/2(u) reduces to the traditional Fourier
transform S(u) = S(f) of s(t). Indeed, the traditional FT can be insightfully interpreted
as a rotation of the time signal through an angle of π/2 in the time-frequency plane. A
rotation through some other angle gives a generalised or ‘fractional frequency’ spectrum
of the signal at that angle, with the fractional frequency denoted3 by u.

Properties of the FrFT and its numerical implementation have been summarised in
[10] and the numerous references therein. Probably the most important effect to note is
that, for the correct transform order α, the FrFT can achieve the maximum integration
gain of N , which is the gain achievable by the traditional FT on a pure tone signal of N
samples.

3.1.1 Application to accelerating targets

An accelerating target with constant (radial) acceleration a produces a constant chirp rate
of cr = a/λ, so that the instantaneous target Doppler frequency is f = f0 +cr t where f0 is
an initial Doppler frequency. To spectrally compress such a chirp, the optimal transform
order α that should be used is related to cr through

α =
π

2
+ β =

π

2
+ tan−1(D cr), (12)

in which the scale factor D due to the discretisation of the time-frequency domain is
related to the time and frequency resolutions δt and δf by [12]

D =
(
δf

δt

)−1

=
(

N

PRF 2

)
. (13)

Figure 4 illustrates the various quantities involved in (12). With an optimal rotation angle
β as expressed in (12), the signal would appear like a ‘pure tone’ along the ‘fractional time’
domain, or equivalently as an optimally compressed spike in the ‘fractional frequency’
domain.

3For this reason, the same notation F is used for both the traditional Fourier transform and the
fractional Fourier transform, with a subscript α explicitly denoting the ‘fractional form’.
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Figure 4: A schematic illustration of the compression of chirped signals
as the time-frequency plane is rotated and the relationship between pure
Fourier domain and fractional Fourier domain.

In real applications, true target acceleration a and hence cr and α are generally un-
known parameters to be estimated, and thus a search for optimum α is necessary. We use
the following simple steps for this purpose:

1. The FrFT is applied for a range of α corresponding to realistically possible values of
a, producing a 2-dimensional array of fractional frequency spectrum versus α. An
example of such an array is shown in Figure 5.

2. The value of α producing the largest peak in this array, denoted by αopt, is selected
and the corresponding fractional frequency spectrum is extracted. If desired, a finer
search around αopt could be carried out for a more precise estimate of α.

3. The index of the initial (physical) frequency of the chirp signal is determined from
the index of the fractional frequency of the largest peak, denoted by kp, through the
simple relation

k0 =
kp

sinαopt
, (14)

leading to an expression for the initial physical frequency, in Hz, of the chirp signal
given by

f0 = k0
PRF

N
. (15)

A direct and perhaps more visual illustration of the performance of the FrFT relative
to the traditional FT is shown in Figure 6. Note that the compressed frequency is not a
physically meaningful frequency and in a filter not at the centre of the chirp plateau, but
can be readily converted to physically meaningful quantities by relations (14) and (15).

UNCLASSIFIED 9
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Figure 5: The fractional Fourier spectra for a range of transform order α, with
the traditional Fourier spectrum corresponds to α = 90◦.

Figure 6: The Fourier transform of a chirp and the equivalent fractional
Fourier transform showing an improvement in relative amplitude due to
the compressed spectrum.
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3.1.2 Effects of the FrFT on clutter

In this section, the effects of the FrFT on clutter is investigated, based on the surface clutter
models described in Section 2.2.1. Clutter spectra for, for both sea and land clutter, as a
function of α are shown in Figures 7(a), 7(b), and 7(c), which include the case of α = 90◦

(for the traditional FT). It should be noted that for each of the surface clutter cases, the
clutter spectrum spreads out as α deviates from 90◦. This effect may be due, at least in
part, to the fact that the clutter model used here does not include second-moment effects
suggesting that chirp-like characteristics in the data are not present, and hence clutter
power would not be focused along the fractional frequency domain by the FrFT. However,
if the spread of clutter is actually the case with real clutter, it would provide an extra
advantage of using the FrFT: compressing chirp signals of interest while de-compressing
the undesirable clutter. This issue will be investigated in a future work when real clutter
data becomes available.

3.2 The S-Method

Of particular interest in the present study is the so-called S-Method, first proposed in L.
Stankovic [9] in 1994. This tool is can be described as the Wigner distribution modified
by a reduced integration extent, and is chosen for its relatively low computational cost
and excellent performance when the component frequencies are well separated. In discrete
form, the S-Method can be written as

SSM (m, k) =
L∑

i=−L
S(m, k + i)S∗(m, k − i), k = 1, 2, . . . , N, (16)

where m and n are respectively slow-time and frequency-filter indices; S(m, k) with
k = 1, 2, . . . , N is the discrete short-time Fourier transform (STFT) at m, and L is an
integer chosen to minimize cross terms. When L = 0, the S-Method reduces to the spec-
trogram. When L spans the entire STFT domain, the S-Method is identical to the Wigner
distribution. L can be chosen to vary with frequency filter index k, and since the aim is to
optimise the focusing (or spectral compression) of the auto-terms and to avoid the cross
terms, L needs to be determined adaptively for each value of n. In the present work,
either of the following two criteria can be used for a ‘simple hump’ in the STFT: (1) the
L-profile takes a triangular shape such that the sum in (16) stops when either |S(m, k+ i)|
or |S(m, k − i)| is less than a certain percentage of |S(m, k)|; or (2) the L-profile has a
rectangular shape of sufficiently large height, which can be experimentally determined,
extending just enough to cover the STFT hump to be compressed.

To facilitate a comparison with the FrFT, which is a linear transform, we modify
slightly the conventional S-Method by taking the square root of the above sum and retrieve
its first-order dimensionality:

SSM (m, k) =

 L∑
i=−L

S(m, k + i)S∗(m, k − i)

1/2

. (17)

An important practical aspect of the S-Method is the requirement of oversampling.
Accuracy of the discrete sum in (17) requires a certain minimum degree of oversampling

UNCLASSIFIED 11
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(a) Sea clutter spectra, sea state 3, for a range of transform
order α

(b) Sea clutter spectra, sea state 5, for a range of transform
order α

(c) Land clutter spectra for a range of transform order α

Figure 7: Surface clutter spectra for a range of transform order α.
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in the time domain, which translates a certain degree of smoothing in the S(m, k) array (in
k). We have found by numerical experiments that a factor of at least 4 above the Nyquist
sampling seems to be sufficient. This oversampling requirement adds to the computational
cost of the S-Method.

Examples of applying the modified S-Method to typical chirp signals and clutter are
shown in Figures 8(a) and 8(b) respectively. As expected, the S-Method spectrally com-
presses a LFM signal to that of a pure tone signal, while no compression is achieved for
a clutter signal. An undesirable feature of the S-Method is also revealed in Figure 8(b):
its inherent cross-term problem causes mainlobe clutter to ‘leak’ into the sidelobes, effec-
tively raising sidelobe clutter levels which can potentially reduce detectability of targets
of interest.

(a) Spectral compression by the S-Method on a
LFM signal

(b) S-Method on clutter of sea state 3

Figure 8: The effect of the S-Method on a LFM signal and clutter.
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Location Target velocity Target Doppler
A 100 m/s 2 kHz
B 12 m/s 250 Hz
C 0 m/s 0 Hz

Figure 9: Target trajectory and Doppler characteristics at 3 particular locations
considered.

4 Results

In this section we aim to apply the FrFT and S-Method techniques to investigate the
enhanced coherent integration of a target signal in a clutter environment, for a range of
target acceleration, CPI length, and for a typical value of the signal-to-clutter ratio (SCR).
A typical target manoeuvre is used which captures typical locations of the target relative
to clutter in the Doppler frequency domain: target in the clutter-free region, near the
clutter edge, and well inside the clutter region.

The maximum achievable coherent integration gain for the FrFT and the S-Method
is still N , the number of samples used in a CPI. In digital implementation, however,
the actual gain may be slightly less than N due to target Doppler frequency straddling
between discrete filters. It is thus meaningful to use N as a ‘bench mark’ to measure
the performance. It is also useful to compare it with the gain by the traditional FT. For
consistency, we define integration gain as follows. For a well-defined peak, gain is set
equal to the magnitude of the peak. For a spread chirp spectrum, gain is set equal to the
averaged amplitude of the ‘plateau region’ of the spectrum.

4.1 Scenario and System Description

For a demonstration, we use the following simulated scenario and system setup. A pulse
Doppler radar operating at a frequency of 3 GHz, with a pulse repetition frequency of
40 kHz, horizontal polarisation, is mounted on a platform travelling at 100 m/s. A target,
approaching the radar platform, nose aspect, at a constant (negative) acceleration a, and
makes a U-turn manoeuvre, as depicted in Figure 9. The target locations, at which we
wish to investigate target detection processing, are labeled as A, B, and C, at which
target velocities and Doppler frequencies are as listed in the table in Figure 9. The clutter
environment includes both land and sea clutter using the clutter models and parameters
described in Section 2.2. It should be noted that for locations B and C, only the FrFT
processing is applicable, as discussed in Section 3.2.

At location A, the approaching and accelerating target produces a spread Doppler
plateau that is well clear of the clutter region, as shown in Figure 10(a). After FrFT
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processing, the resulting spectrum, shown in Figure 10(b), shows a well compressed spike
for the target and a spread-out region for the clutter which is also attenuated by about
15 dB below the target spike.

Similar performance results by the FrFT are can be seen at location B in Figures 10(c)
and 10(d), at which the target manoeuvres such that its Doppler content partially overlaps
with that of clutter, and for location C in Figures 10(e) and 10(f) at which the mean target
velocity is zero but target acceleration is non-zero and is the same as at locations A and
B. Regardless of the relative locations of the target and clutter in the frequency domain,
whether target is well clear of clutter or totally inside clutter, the FrFT always optimally
enhances the target signal while attenuating the clutter signal at the same time.

To demonstrate the effect of the S-Method on the signal and clutter, the spectra for
an accelerating target and clutter at locations A, B and C is shown in Figure 11. For
location A, the spectra for clutter and target signal processed using the S-Method are
well separated in Doppler, as seen in Figure 11(a), making the S-Method effective at
compressing the chirped signal. However, the S-Method involves data outside the target
Doppler region giving rise to leakage of noise into the S-Method processing. Hence, the
overall signal-to-noise ratio is increased and is inferior to the FrFT processing seen in
Figure 10(b).

For similar reasons, the S-Method performance is greatly degraded when the target
Doppler overlaps the clutter region, as for locations B and C seen in Figures 11(b) and
11(c), with no improvement in signal gain compared with the FrFT processing for the
relative locations.

4.2 Comparison Results

In this section, the performance of the FrFT and the S-Method on accelerating targets
compared with the traditional FT is investigated. A signal is generated such that the
signal-to-clutter ratio (SCR) is set to 5 dB and the clutter-to-noise ratio (CNR) is set
at 10 dB. For each of the target locations, the integration gain produced from the FrFT
and FT is presented as a function of CPI length, for various target accelerations. The
S-Method results are included for location A only. Also, for comparison purposes, the FT
of a non-accelerating target is presented as this represents the maximum integration gain
possible for a given CPI length.

At location A, the integration gain as a function of CPI length, for various values of
target acceleration, is shown in Figure 12. When the target Doppler is well clear of the
clutter Doppler, both the FrFT and S-Method compare closely with a non-accelerating
target, for each of the target accelerations cases. Figure 13 and 14 show the results for
the FrFT as compared to the FT for locations B and C respectively. Again, the FrFT
processing achieves results that are similar to the non-accelerating target case for each of
the target accelerations, even when the target is obscured by clutter.

These results convincingly demonstrate that the FrFT is robust for detection of an
accelerating target in both land and sea clutter, at least for simulated clutter.
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(a) Spectra showing accelerating target and
clutter Dopplers for location A

(b) Same as (a), after FrFT processing

(c) Spectra showing accelerating target and
clutter Dopplers for location B

(d) Same as (c), after FrFT processing

(e) Signal spectra showing accelerating tar-
get and clutter Dopplers for location C

(f) Same as (e), after FrFT processing

Figure 10: Spectra of clutter and an accelerating target signals at locations A, B,
and C, for a 3 GHz radar with 40 kHz PRF, on a platform travelling at 100 m/s. Left
figures: FT processed; right figures: FrFT processed. Plots normalised to peak signal.
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(a) Spectra showing accelerating target
and clutter Dopplers for location A

(b) Spectra showing accelerating target
and clutter Dopplers for location B

(c) Spectra showing accelerating target
and clutter Dopplers for location C

Figure 11: Spectra of clutter and an accelerating target signals at locations A, B,
and C, for a 3 GHz radar with 40 kHz PRF, on a platform travelling at 100 m/s,
processed using the S-Method. Plots normalised to peak signal.
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(a) Target acceleration of 3g

(b) Target acceleration of 5g

(c) Target acceleration of 8g

Figure 12: Processing gain as a function of CPI length, at 40 kHz PRF, 3 GHz
carrier frequency, for the target at location A (mean inbound velocity of 100 m/s) for
various accelerations.
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(a) Target acceleration of 3g

(b) Target acceleration of 5g

(c) Target acceleration of 8g

Figure 13: Processing gain as a function of CPI length, at 40 kHz PRF, 3 GHz
carrier frequency, for the target at location B (mean inbound velocity of 12 m/s) for
various accelerations.
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(a) Target acceleration of 3g

(b) Target acceleration of 5g

(c) Target acceleration of 8g

Figure 14: Processing gain as a function of CPI length, at 40 kHz PRF, 3 GHz car-
rier frequency, for the target at location C (mean inbound velocity of 0 m/s) for various
accelerations.
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5 Conclusion

We have shown that both the S-Method and the FrFT are useful tools for detecting
accelerating targets, where the traditional Fourier transform fails. However, the FrFT
proves more practical when target detection must be achieved against a clutter background.
For each processing technique the maximum coherent integration gain as in the case for
the Fourier transform on pure tone signals can almost be achieved. Also, the nature of
the FrFT processing suppresses clutter in the fractional frequency domain increasing the
clutter-to-signal ratio which is already enhanced from the FrFT integration gain.

Our investigation will be extended to include an accelerating target using real clutter
data in a future report, which will also delve further into the suppression effects of the
FrFT on real clutter.
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